Capacity-Achieving Feedback Schemes for Gaussian Finite-State Markov Channels With Channel State Information

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capacity-Achieving Schemes for Finite-State Channels

Capacity-Achieving Schemes for Finite-State Channels

متن کامل

Capacity, mutual information, and coding for finite-state Markov channels

The Finite-State Markov Channel (FSMC) is a discrete time-varying channel whose variation is determined by a finite-state Markov process. These channels have memory due to the Markov channel variation. We obtain the FSMC capacity as a function of the conditional channel state probability. We also show that for i.i.d. channel inputs, this conditional probability converges weakly, and the channel...

متن کامل

Capacity, Mutual Information, and Coding for Finite-state Markov Channels I Introduction Ii Channel Model

The Finite-State Markov Channel (FSMC) is a discrete-time varying channel whose variation is determined by a nite-state Markov process. These channels have memory due to the Markov channel variation. We obtain the FSMC capacity as a function of the conditional channel state probability. We also show that for i.i.d. channel inputs, this conditional probability converges weakly, and the channel's...

متن کامل

Capacity of Finite State Markov Channels with General Inputs

We study new formulae based on Lyapunov exponents for entropy, mutual information, and capacity of finite state discrete time Markov channels. We also develop a method for directly computing mutual information and entropy using continuous state space Markov chains. Our methods allow for arbitrary input processes and channel dynamics, provided both have finite memory. We show that the entropy ra...

متن کامل

Capacity, Mutual Information, and Coding for Finite-State Markov Channels - Information Theory, IEEE Transactions on

AbstructThe Finite-State Markov Channel (FSMC) is a discrete time-varying channel whose variation is determined by a finite-state Markov process. These channels have memory due to the Markov channel variation. We obtain the FSMC capacity as a function of the conditional channel state probability. We also show that for i.i.d. channel inputs, this conditional probability converges weakly, and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2015

ISSN: 0018-9448,1557-9654

DOI: 10.1109/tit.2015.2437380